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Abstract
Since articular cartilage possesses only a weak capac-
ity for repair, its regeneration potential is considered 
one of the most important challenges for orthopedic 
surgeons. The treatment options, such as marrow 
stimulation techniques, fail to induce a repair tissue 
with the same functional and mechanical properties of 
native hyaline cartilage. Osteochondral transplantation 
is considered an effective treatment option but is as-
sociated with some disadvantages, including donor-site 
morbidity, tissue supply limitation, unsuitable mechani-
cal properties and thickness of the obtained tissue. 
Although autologous chondrocyte implantation results 
in reasonable repair, it requires a two-step surgical pro-
cedure. Moreover, chondrocytes expanded in culture 
gradually undergo dedifferentiation, so lose morpho-
logical features and specialized functions. In the search 
for alternative cells, scientists have found mesenchymal 
stem cells (MSCs) to be an appropriate cellular mate-
rial for articular cartilage repair. These cells were origi-
nally isolated from bone marrow samples and further 
investigations have revealed the presence of the cells 
in many other tissues. Furthermore, chondrogenic dif-
ferentiation is an inherent property of MSCs noticed 

at the time of the cell discovery. MSCs are known to 
exhibit homing potential to the damaged site at which 
they differentiate into the tissue cells or secrete a wide 
spectrum of bioactive factors with regenerative proper-
ties. Moreover, these cells possess a considerable im-
munomodulatory potential that make them the general 
donor for therapeutic applications. All of these topics 
will be discussed in this review.
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Core tip: Articular cartilage possesses only a weak ca-
pacity for repair; therefore, regeneration of its defects 
is considered one of the most important challenges for 
orthopedic surgeons. On the other hand, mesenchymal 
stem cells (MSCs) are specified as appropriate cell can-
didates for regenerating incurable defects of articular 
cartilage due to the following characteristics: inherent 
chondrogenic property, easy availability, cell homing 
potential and immunomodulatory function. In the past, 
several attempts were made to exploit MSC capacity to 
cure articular cartilage defects developed in osteoar-
thritis, rheumatoid arthritis or following trauma. All of 
these topics are discussed in this review.
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INTRODUCTION
Articular cartilage covers the ends of  bones in diarthro-
dial joints. This highly specialized tissue reduces joint 
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friction and protects the bone ends from the shear forces 
associated with a high mechanical load. Furthermore, it 
works as a lubricant and a shock absorber. Histologically, 
articular cartilage is hyaline cartilage tissue with no blood, 
lymphatic or nerve supply.

An articular cartilage defect is an area of  damaged 
or missing cartilage that is often caused by acute trauma. 
These defects usually are well defined and surrounded 
by normal articular cartilage. Cartilage defects may also 
occur following osteoarthritis (OA), osteonecrosis, os-
teochondritis dissecans and other pathologies[1]. Defects 
caused by OA are often ill-defined, large and surrounded 
by osteoarthritic tissue of  variable quality. If  cartilage 
defects are restricted to the articular cartilage, they are 
termed chondral or partial thickness defects and if  the 
defects penetrate into subchondral bone, they are called 
osteochondral or full thickness defects.

It has long been known that articular cartilage has 
only a weak capacity for self-repair[2], which is partially 
due to its avascularity. With the lack of  blood supply, a 
set of  complex biochemical events that take place in or-
der to repair the damage fails to occur. Wound healing in 
hyaline cartilage is further prevented due to the cartilage 
dense extracellular matrix impairing the migration capac-
ity of  chondrocytes[3-5].

In general, while no repair process occurs in chondral 
defects, in osteochondral defects, a repair process is initi-
ated by undifferentiated mesenchymal stem cells (MSCs) 
from the bone marrow tissue of  subchondral bone[6,7]. 
Repair of  full thickness cartilage defects depends mainly 
on the patient age, defect size and location[8]. Small full 
thickness defects are repaired by formation of  hyaline 
cartilage, whereas large osteochondral defects are only 
repaired by formation of  scar tissue (fibrous tissue) or 
fibrocartilage. 

For a long period of  time, the current regenerative 
treatment option for joint cartilage defects was identified 
as marrow stimulation techniques, including microfrac-
ture, Pridie drilling and abrasion arthroplasty, all of  which 
involve punching or drilling holes through the subchon-
dral plate[9]. The main disadvantage of  such techniques 
is the formation of  repair tissue that is similar to fibro-
cartilage rather than hyaline cartilage. Fibrocartilage is a 
poorly organized tissue containing significant amounts 
of  collagen type Ⅰ. It exhibits inferior mechanical and 
biochemical characteristics compared to normal hyaline 
articular cartilage. The matrix of  fibrocartilage breaks 
down with time and loading, leading to development of  
secondary OA in injured cartilage[10].

Autologous osteochondral mosaicoplasty, known 
also as the osteoarticular transfer system, is the other 
therapeutic option for cartilage repair. Unfortunately, its 
clinical application is a technically challenging procedure. 
Osteochondral tissue is usually obtained from a non-
weight bearing area of  the patient’s own articular cartilage 
cells. These methods have some disadvantages, including 
donor site morbidity, tissue supply limitation, unsuitable 
mechanical properties and thickness of  the obtained tis-
sue[11,12]. The use of  allologous tissue could be considered 

an alternative option but it is associated with high cost, 
risk of  immunological rejection and transmission of  
pathogens[13].

There are two types of  cell-based treatments for car-
tilage defects, the autologous chondrocyte implantation 
(ACI) and stem cell-based cell therapy[14]. ACI technique 
involves a two-step surgical procedure as follows: (1) col-
lecting tissue and (2) transplantation. According to the 
literature, the effectiveness of  ACI is still controversial. 
While some scientists have reported that this technique 
is more likely to be applicable for small articular cartilage 
defects, others believe that even after ACI, some defects 
have continued to persist in the articular cartilage. It is 
noted that obtaining sufficient chondrocytes from biop-
sies is challenging; therefore, in vitro expansion of  chon-
drocytes is inevitable. It has been reported that expanded 
chondrocytes in culture gradually undergo dedifferentia-
tion, so lose morphological features and specialized func-
tions[15]. Limitations associated with chondrocyte-based 
treatment have motivated investigators to search for alter-
native reliable cellular materials. In this context, embryonic 
stem cells (ESCs), inducible pluripotent stem cells (iPSCs) 
and MSCs have gained considerable attention. 

ESCs are pluripotent cells derived from a blastocyst 
inner cell mass. These cells have the characteristics of  
self-renewal as long as they are exposed to a feeder cell 
layer or leukemia inhibitory factor (LIF). Differentiation 
is initiated upon removal of  the feeder cell layer or LIF, 
resulting in the formation of  three dimensional cell ag-
gregates known as embryoid bodies (EBs). These EBs 
can be regionally differentiated into derivatives of  three 
germ layers: the mesoderm, ectoderm and endoderm[16]. 
Thus, ESCs can be a potential stem cell source to fabri-
cate cartilage-like tissue constructs in the field of  tissue 
engineering; however, immunological incompatibility, the 
possibility of  teratoma formation in transplantations, as 
well as certain ethical concerns make scientists hesitant to 
use them as cellular materials for tissue regeneration[17]. 
To consider these concerns, scientists have established 
ESC-like stem cells, known as iPSCs, from somatic cells 
by plasmid or adenovirus-based transduction. Actually, 
iPSCs are patient-specific ESCs without ethical concerns 
and immunogenicity[18,19].

Among the potential cell sources for cartilage regen-
eration, MSCs are considered an appropriate candidate 
owing to several specific characteristics. These properties 
will be reviewed and followed by the examples of  investi-
gations using MSC-based treatment for articular cartilage 
defects.

MSCS
MSCs, as non-hematopoietic cells, are originally derived 
from bone marrow tissue. Historically, Cohnheim was 
the first scientist who suggested the presence of  MSCs 
in bone marrow tissue following some wound healing 
experimental studies in rabbits. By intravenous injection 
of  non-soluble aniline stain, this German pathologist 
found some stained cells at the site of  the wound experi-
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mentally created in the animal’s distal limb. He concluded 
that the stained fibroblastic cells would be derived from 
bone marrow and transferred to the wound site via the 
circulatory system[20,21]. Many years after this suggestion 
through a series of  bone marrow transplantation experi-
ments, scientists found that marrow cells are able to 
produce cartilage and bone-like tissue in vivo[22,23] but they 
were unable to determine the cells responsible for this 
property. Friedenstein et al[24] were the first to isolate and 
describe a fibroblastic population as the cellular equiva-
lent of  chondrogenic and osteogenic features of  marrow 
tissue. They referred to these cells as colony forming unit 
fibroblasts. Thus far, the fibroblast-like cells have been 
referred to as marrow stromal cells, marrow progenitor 
cells, marrow stromal fibroblasts and MSCs. MSC is the 
most frequently used nomination, particularly in recently 
published investigations.

As with any stem cell type, MSCs possess two im-
portant properties, long-term self-renewal ability and the 
capacity to differentiate along multiple cell lineages, such 
as bone, cartilage and adipose cells. There is controversy 
regarding the profile of  surface marker expression on 
MSCs. According to the suggestion of  the International 
Society for Cellular Therapy, CD70, CD90 and CD105 
have been used as positive markers, while CD34 has 
been used as a negative marker[25]. In this context, some 
scientists believed that the three positive markers are 
co-expressed in various cells so they are unable to iden-
tify MSCs in vivo, whereas expression of  the negative 
marker, CD34, has been shown on native adipose-derived 
MSCs[26]. Furthermore, Stro-1 is the other frequently 
used marker of  MSCs[27,28]. This surface epitope has been 
shown to be an endothelial antigen but whether it can 
identify MSCs in vivo remains unknown[29].

Investigations have shown that MSCs occur in low 
quantity in bone marrow aspirate. In spite of  their lim-
ited numbers, these cells are easily expandable through 
standard culture techniques. The propagation of  MSCs 
is strongly dependent on the bovine serum content of  
culture media. The cells assume a spindly-shaped mor-
phology upon cultivation. MSC primary culture has been 
reported to be heterogeneous, containing multiple colo-
nies with various differentiation capacities. Pittenger et 
al[30] showed that nearly one third of  these colonies have 
osteogenic, adipogenic and chondrogenic differentia-
tion potentials, while the other two thirds exhibit either 
bipotent or unipotent capacity to differentiate into osteo-
genic/chondrogenic and adipogenic lineages, respectively. 
In addition to differentiating into bone, cartilage and 
adipose cells, MSCs have been reported to possess differ-
entiation capacity along non-mesenchymal cell lineages, 
such as neurons, keratinocytes, liver, intestine and kidney 
epithelial cells[31,32]. This property is referred to as MSC 
plasticity or transdifferentiation. 

INHERENT CHONDROGENIC POTENTIAL 
OF MSCS
The chondrogenic differentiation property is among the 

first differentiation capacities of  MSCs reported at the 
time when Friedenstein et al[33] isolated and described the 
cells. These investigators plated marrow cells in plastic 
dishes and removed non-adherent cells four hours after 
culture initiation. The adherent cells remained quiescent 
for two to four days and then underwent proliferation. 
The culture tended to uniformly consist of  fibroblastic 
cells after several rounds of  subcultures. The most impor-
tant feature of  the cells reported is the capacity of  pro-
ducing small deposits of  bone and cartilage-like tissue. 

To promote/maintain cartilage differentiation/phe-
notype in culture, one critical requirement is to provide a 
3D cellular condensation in which cells could experience 
a microenvironment of  low oxygen tension. Research has 
demonstrated that MSCs hardly differentiate into cartilage 
cell lineage in a 2D culture system. The current technique 
for chondrogenic differentiation of  MSCs is the micro-
mass culture system which Johnstone used for chondro-
cyte culture in 1998. These authors reported that chon-
drocytes from a growth plate cultured in the micromass 
system could maintain chondrocytic phenotype without 
undergoing dedifferentiation. In micromass culture, the 
cells are placed in a tube and centrifuged into a condensed 
aggregate. A chondrogenic medium providing appropri-
ate inducers for cell differentiation is then added to the 
resulting pellet. Transforming growth factor (TGF)-β3 is 
the most crucial inducer included in chondrogenic medi-
um[34-38]. This growth factor probably acts by inducing the 
expression of  Sry-related high-mobility-group box-9[39], 
which in turn regulates the expression of  aggrecan and 
collagen type Ⅱ, type Ⅸ and type Ⅺ during chondrocyte 
differentiation[40]. Furthermore, research has indicated 
that addition of  bone morphogenetic proteins enhances 
chondrogenesis under the specific conditions employed 
by Steinert et al[41]. Insulin-like growth factor-1 has also 
been shown to have a synergistic effect with TGF-β1 in 
promoting chondrogenesis[42]. Furthermore, fibroblast 
growth factor-2 (FGF-2) may possess a chondrogenic 
function. It has been demonstrated that in human marrow 
MSC culture, FGF-2 in combination with dexamethasone 
enhances production of  collagen type Ⅱ, glycosamino-
glycan (GAG) and aggrecan. Platelet-rich plasma has also 
been reported to possess chondrogenic effects owing to 
the presence of  FGF-2 and TGF-β2[43-46].

DIFFERENT SOURCES OF MSCS
Since the MSC population exists in many tissues in body, 
they could be considered readily available cells for ap-
plication in regenerative medicine. Besides bone marrow, 
multiple tissues have been reported to contain MSCs. 
These include adipose tissue[47], trabecular bone[48], peri-
osteum[49], synovial membrane[50], skeletal muscle[51], as 
well as teeth[52], among which bone marrow and adipose 
tissue are widely used sources. Furthermore, some re-
searchers have paid special attention to synovial mem-
brane as a potent source of  stem cells with good chon-
drogenic potential.

Unlike bone marrow MSCs, adipose MSCs can be 
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activity of  CD4+ and CD8+ T lymphocytes, as well as 
T memory cells[63,64]. This is directed mainly by target-
ing the inhibition of  cyclin D2, which leads the T cells 
into cell cycle arrest regulating anergy[65]. Furthermore, 
for this effect, there is no need for major histocompat-
ibility complex (MHC) identity between MSC and the 
target immune effector. Similarly, it has been observed 
that B lymphocyte neither proliferates nor differentiates 
into immunoglobulin-producing cells in the presence of  
MSCs[66]. Moreover, MSCs have been shown to inhibit 
the proliferation and cytotoxicity of  interleukin (IL)-2 or 
IL-15-stimulated natural killer cells in vitro[67]. MSCs could 
also inhibit the maturation of  monocytes into dendritic 
cells (DCs) in vitro. Mature DCs incubated with MSCs dis-
play a decreased cell-surface expression of  MHC class Ⅱ 
molecules, CD11c, CD83 and co-stimulatory molecules, 
resulting in impaired antigen-presenting cell function. In 
addition, MSCs have been shown to inhibit pro-inflam-
matory potential of  DCs by inhibiting their production 
of  tumor-necrosis factor (TNF)[66-69].

A range of  mechanisms have been proposed to ex-
plain MSC immunomodulatory capacity. For example, it 
has been reported that MSCs exert their immunomodula-
tory effects through secretion of  soluble inflammatory 
mediators, including IL-6, IFN-g, TNF-a, IL-1a and IL-
1b[70]. These effects are created through enzymatic action 
such as the expression of  inducible nitric oxide synthase 
(iNOS) and indoleamine 2,3-dioxygenase (IDO), and 
through production of  human leukocyte antigen class Ⅰ 
molecule HLA-G and prostaglandin E2 (PGE2)[70,71]. 
Moreover, it has been indicated that MSCs can mediate 
immunosuppression (modulation of  T cell proliferation, 
gene expression and cell migration) by releasing galec-
tin-1, an intracellular and cell surface protein, in a soluble 
form[72]. Furthermore, research has suggested a relation-
ship between MSC immunosuppressive function and the 
expression of  Toll-like receptors (TLR). MSCs have been 
shown to express a range of  functional TLRs, specifically 
TLR-2 through TLR-8, leading to the production of  IL-6 
and IL-8 which subsequently affects T-cell function. In 
support of  this idea, some authors have demonstrated 
that the inhibition of  these receptors in vitro is conversely 
associated with a reduction in immunosuppressive activ-
ity of  MSCs[72,73].

Regarding the mechanism of  MSC-mediated im-
munosuppression, it must be emphasized that some 
mechanisms are constitutively involved (i.e., production 
of  PGE2), whereas others are induced when MSCs are 
exposed to an inflammatory environment (i.e., IDO is 
expressed when MSCs are stimulated with IFNγ). In ad-
dition, according to the evidence, cooperation of  several 
molecules (rather than a single molecule) is responsible 
for the MSC immunomodulatory function[66]. Finally, 
there are differences among species regarding the mecha-
nism of  immunosuppression. For example, in human 
MSCs, IDO-mediated suppression is one of  the most 
prominent mechanisms. This enzyme depletes the cellular 
microenvironment of  the essential amino acid trypto-

isolated in large quantities with minimal morbidity and 
discomfort[53,54]. Moreover, the frequency of  MSCs in the 
whole bone marrow of  skeletally mature adults ranges 
from 1 in 50000 to 1 in 100000 cells, corresponding to a 
yield of  a few hundred MSCs/milliliter of  marrow. Fraser 
et al[54] reported that the frequency of  MSCs in adipose 
tissue is in the order of  1 in 100 cells, about 500-fold 
more than that found in bone marrow[55]. In view of  
these practical advantages, MSC from adipose tissue 
could be considered an alternative option for bone mar-
row MSCs in cell-based cartilage regeneration strategies.

MSCs derived from synovial membranes have been 
shown to possess multilineage potential. These cells can 
be stimulated to undergo chondrogenesis in vitro with 
appropriate inducers. The study by Shirasawa et al[56] 
showed that human synovial-derived cells have greater 
chondrogenic potential than bone marrow MSCs, adi-
pose MSCs, as well as periosteal- or muscle-derived cells 
from the same patients. Furthermore, a follow-up study 
by the same authors indicated that synovial-derived MSCs 
produce consistently larger cartilage than bone marrow 
MSCs from the same patients[57]. 

HOMING PROPERTY OF MSCS
MSCs are known to have a homing potential to the dam-
aged site which could possibly help to repair in two ways: 
(1) differentiation to tissue cells and restoration of  lost 
morphology and function; and (2) secretion of  a wide 
range of  bioactive factors and creation of  a repair envi-
ronment with anti-apoptotic effects, immunoregulatory 
function and the stimulation of  endothelial progenitor 
cell proliferation[58]. 

The precise mechanisms of  the MSC homing process 
have not been thoroughly understood. In this regards, 
it has been proposed that chemokines and their recep-
tors on the surface of  MSCs are the key players[59] which 
enable MSCs to migrate towards chemokine gradients 
secreted by injured tissues[60] or tumors[61]. MSCs express 
multiple chemokine receptors, allowing their migration in 
response to the chemokine-attractive gradients created by 
the inflamed injured site. Some chemokine receptors ex-
pressed by MSCs include CCR1, CCR7, CCR9, CXCR3, 
CXCR4, CXCR5 and CX3CR1[62]. To consider the rela-
tionship between gradient of  chemokine concentration 
and cell migration, it can be concluded that MSCs must 
be transplanted to an adjacent area of  injured site follow-
ing the establishment of  the gradient of  the chemokine 
concentration.

IMMUNOMODULATORY FUNCTION OF 
MSCS
Some scientists consider MSCs a valuable cellular mate-
rial for applications in a variety of  autoimmune and allo-
immune diseases since these cells possess a considerable 
immunomodulatory potential. In this context, research 
has indicated that MSCs can suppress proliferation and 
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phan required for T-cell proliferation. In contrast, in mu-
rine MSC, immunosuppression is mediated by iNOS[74].

MSCS AND CARTILAGE GENE THERAPY
Gene therapy approaches could be considered a prom-
ising strategy for efficient promotion of  regeneration 
in cartilage defects. In this context, MSCs could readily 
be transduced by viral vectors. Also, specific liposomal 
formulations have been reported as a safe gene delivery 
system into MSCs with some efficiency[75]. MSC-based 
gene therapy offers some advantages for articular car-
tilage repair. Using this approach, therapeutic proteins 
could be designed to overexpress in MSCs transplanted 
into articular cartilage defect. This in turn could enhance 
the structural features of  the repair tissue formed at the 
defect site. Furthermore, MSC-based gene therapy is an 
applicable approach to deliver genes with complementary 
mechanisms of  action (i.e., chondrogenic and prolifera-
tive factors) into a cartilage defect.

In many studies, MSC-mediated gene delivery has been 
applied for cartilage repair using a variety of  chondro-
genic growth factors. For example, it has been indicated 
that overexpression of  IGF-1 in concert with TGF-β1 or 
BMP2 in vitro in MSCs could induce greater chondrogenic 
tissue than either growth factor alone[42,76]. According to 
this research, overexpression of  IGF-1 alone could not in-
duce chondrogenic differentiation of  MSCs in culture. In 
contrast to this finding, Gelse et al[77] indicated the differ-
entiation-promoting effect of  IGF-1. In this in vivo study, 
MSCs from rib perichondrium of  rat were subjected to 
adenoviral transduction with adenoviral vectors encoding 
BMP-2 and adenoviral vectors encoding IGF-1. The cells 
were then mixed with fibrin glue matrix and delivered to 
cartilage partial thickness lesions of  the patellar groove. 
Both treatments with BMP-2 and with IGF-1 have been 
shown to improve repair tissue compared with the naïve 
and Ad.LacZ controls after eight weeks. However, the 
majority of  BMP-2 treated joints showed signs of  ectopic 
bone formation and osteophytes, which were not present 
in the knees of  the IGF-1 treated defects[77]. In addition to 
IGF-1 and BMP-2, some other growth factors, including 
BMP-4[78] and growth differentiation factor 5[79], were also 
employed in MSC-based gene delivery to cartilage defects 
which resulted in an enhanced cartilage repair.

POTENTIAL PITFALLS OF USE OF MSCS
In spite of  the above mentioned potential, there are 
some pitfalls associated with MSC application for articu-
lar cartilage regeneration. Some research has indicated 
the expression of  cartilage hypertrophy markers such as 
collagen type X, matrix metalloproteinase-13, alkaline 
phosphatase, parathyroid hormone-related protein recep-
tor and vascular endothelial growth factor after inducing 
MSCs to undergo chondrogenesis. Since hypertrophy 
could finally lead to ossification of  cartilage tissue, sci-
entists are concerned about the clinical application of  
MSCs for regenerating articular cartilage defects[80-83]. 

Furthermore, it has been reported that the thickness 
of  the regenerated cartilage by MSC transplanted into 
cartilage defects was too thin to resemble mature carti-
lage[84]. However, there have been promising attempts to 
overcome these issues, such as that co-culture of  MSCs 
with mature chondrocytes has been reported to result in 
decreased expression of  hypertrophy markers[85]. Further 
investigation has revealed that such an anti-hypertrophic 
effect is created by the parathyroid hormone-related 
peptide secreted by mature chondrocytes[86]. Moreover, a 
recent study indicated that the immature cartilage treated 
with FGF-2 and TGF-β1 displays increased nano-com-
pressive stiffness, decreased surface adhesion, decreased 
water content, increased collagen content and smoother 
surfaces, indicating characteristics of  mature cartilage[87]. 

REGENERATION OF ARTICULAR 
CARTILAGE WITH MSC 
TRANSPLANTATION
During the past years, valuable attempts have been made 
to evaluate MSC potential in regeneration of  articular 
cartilage defects. Examples of  such efforts in animal 
models and human are described. 

MSCS FOR CARTILAGE REGENERATION 
IN ANIMAL MODELS
In order to study the regenerative potential of  MSCs in 
cartilage defects in vivo, rabbit has frequently been used 
as an animal model. In some studies, MSCs have been 
applied alone without any biomaterial. Im et al[88] isolated 
MSCs from rabbit marrow and transplanted them into a 
full thickness osteochondral defect which was artificially 
made on the same rabbit’s patellar groove. Evaluation 
of  repair 14 wk post transplantation indicated that the 
histological score of  experimental group was higher than 
the corresponding value of  the control group (untreated); 
therefore, they concluded that repair of  cartilage defects 
can be enhanced by the implantation of  cultured MSCs.

Most investigators preferred transplantation of  cells 
combined with scaffold. Wakitani et al[89] used this strategy 
to create regeneration of  full thickness articular cartilage 
following experimentally created defects in rabbit knee 
joint. Cells were combined with collagen Ⅰ gel and surgi-
cally transplanted into the medial femoral condyle defect. 
Two weeks post-surgery, evaluations indicated that MSCs 
differentiated into chondrocytes contribute to regenerate 
damaged tissue and within 24 wk the defect was com-
pletely repaired. Interestingly, a mechanical test indicated 
good mechanical strength of  repair tissue. Recently, Ber-
ninger et al[90] attempted to promote regeneration of  os-
teochondral defects in rabbit knee joint by implantation 
of  allogeneic MSC in fibrin clots.

Also, Grigolo et al[91] used MSCs with scaffold to pro-
mote regeneration in an osteoarthritic defect induced in 
rabbit knee by cutting the cruciate ligaments. Upon es-
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tablishment of  an OA model eight weeks post induction, 
marrow-derived MSCs combined with hyaluronan were 
transplanted into the osteoarthritic knee. Six months 
post-transplantation, a statistically significant difference 
in the quality of  the regenerated tissue was found in the 
implants with scaffolds carrying MSCs compared to the 
scaffold alone.

In addition to rabbit, goat has been also used as an 
animal model for investigation of  the regenerative poten-
tial of  MSCs for cartilage defects. Guo et al[92] loaded goat 
marrow-derived MSC in tricalcium phosphate scaffolds 
and transplanted them into a cartilage defects of  4 mm 
× 8 mm dimensions created in femur articular surface at 
the animal knee joint. About 24 mo after transplantation, 
evaluation indicated that the defect was filled by a hya-
line-like cartilage. According to their findings, the graft 
tended to integrate with the subchondral bone. About 
12-24 mo post-surgery, the GAG content of  the repair 
tissue increased significantly. 

Non-surgical administration of  MSCs for articular 
cartilage repair has also been investigated. Using this 
strategy, Murphy et al[93] reported transplantation of  mar-
row derived MSCs which were suspended in hyaluronan 
through injection into the cavity of  an osteoarthritic 
knee in a caprine model created by cutting cruciate liga-
ments and the meniscus. According to their findings, 
injected cells tended to regenerate meniscus and thereby 
delayed the formation of  OA in the animal knee joint. 
Recently, an injection approach was evaluated in a sheep 
model of  OA by Al Faqeh et al[94]. These authors report-
ed marrow MSCs transplanted either as undifferentiated 
cells or chondrogenically induced cells could retard the 
progression of  OA. According to their findings, the 
induced cells indicated better results, especially in menis-
cus regeneration.

MSCS-MEDIATED CARTILAGE 
REGENERATION IN HUMANS
Cartilage defects following trauma
Articular cartilage of  the knee joint is often injured after 
a fall in athletes, which is considered a challenging surgery 
for orthopedists. In this context, some authors have tried 
to apply the regenerative potential of  MSCs. For exam-
ple, Kuroda et al[95] attempted to reconstruct a 20 mm × 
30 mm full thickness cartilage defect (International Carti-
lage Repair Society Classification grade Ⅳ) in the weight-
bearing area of  the medial femoral condyle of  the right 
knee in a 31-year-old male judo athlete. They transplanted 
MSC/collagen gel into the cartilage defects and observed 
the formation of  hyaline cartilage in the histological sec-
tions. The patient returned to a normal life seven months 
post-implantation. Similarly, Wakitani et al[96] transplanted 
autologous MSC combined with collagen gel into two pa-
tients with patellar full thickness articular cartilage defects 
and observed significant improvements in patient pain 
and walking ability six months post-transplantation.

In another clinical study, Wakitani et al[97] tried to treat 
three patients, including a 31-year-old female, a 44-year-

old male and a 45-year-old male, with full thickness ar-
ticular cartilage defects in their patellofemoral joints. An 
undifferentiated MSC/collagen sheet was transplanted 
into the defects and evaluated for a six month follow-
up period, at the end of  which the clinical symptoms 
were significantly improved. The improvements were 
maintained over a period of  17-27 mo. One year post-
transplantation, histological examination of  the repair 
tissue from one patient revealed that the defect was re-
paired by fibrocartilaginous tissue. Magnetic resonance 
imaging of  the second patient revealed a complete cover-
age of  the defect but was unable to determine the nature 
of  the material covering the defect[97]. The formation of  
repair tissue with fibrocartilage nature in this study would 
be due to the inappropriate microenvironment (i.e., col-
lagen type Ⅰ solution) that was used for transplantation 
of  MSCs. Hyaline cartilage naturally contains plenty of  
collagen type Ⅱ and hyaluronic acid (HA) macromol-
ecules. In this study, the addition of  matrix substance 
in the form of  HA could provide chemical signals for 
right matrix production by the cells. The effect of  HA-
synthetic hydrogel matrix has been recently emphasized 
in the MSC cartilage differentiation process[98]. 

OA
OA is a group of  progressive joint disorders in which 
biomechanical characteristics of  cartilage changes and so 
results in patient disability[99]. This disease progressively 
involves articular cartilage, subchondral bone, ligaments 
and synovial membrane. Some attempts have been made 
to treat osteoarthritic joints using MSCs. In this context, 
a report about the treatment of  24 patients with knee 
OA revealing MSC transplantation by Wakitani et al[100] is 
remarkable. In this clinical trial, adherent cells from bone 
marrow aspirates were embedded in collagen gel and 
transplanted into articular cartilage defects in the medial 
femoral condyle of  12 patients, while the other 12 sub-
jects served as cell-free controls. Outcomes indicated that 
although clinical improvement was not significantly dif-
ferent, the treatment group showed a better arthroscopic 
and histological grading score. 

In the above-mentioned study, MSCs were introduced 
through an invasive approach (surgery) into the defective 
area. Some authors have attempted to introduce the cells 
by injection. Using this approach, Centeno et al[101] applied 
culture expanded autologous MSCs and transplanted the 
cells through an intra-articular injection into the knee of  
a 46-year-old OA patient. They reported that 90% of  the 
patient’s pain was reduced two years post-injection. Fur-
thermore, Davatchi et al[102] used this strategy to introduce 
the cells into knee joints of  four OA patients and re-
ported the strategy as an encouraging method. Using this 
strategy, Emadedin et al[103] injected autologous MSCs in 
six female volunteer patients with knee OA and observed 
more satisfactory outcomes.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic systemic inflam-
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matory disorder that may affect many tissues and organs. 
It principally attacks synovial joints. This systemic auto-
immune disease is associated with progressive reduction 
of  extracellular matrix and joint destruction. Pro-inflam-
matory cytokines including TNF-α and IL-6 are believed 
to be responsible for the creation of  RA symptoms[104,105]. 
Current therapy is based mainly on suppressing the 
symptoms using analgesia and anti-inflammatory drugs, 
including steroids. Although such therapy is effective in 
relieving pain and inflammation, it is not able to regener-
ate damaged cartilage. Furthermore, it has been reported 
that cartilage-regenerating methods, including cell-based 
treatment strategies using autologous chondrocytes, is 
not considered an efficient method for RA patients due 
to prevention of  cartilage formation by the presence of  
the inflammatory condition in the joint or destruction of  
the newly-formed cartilage. 

In contrast to chondrocyte-based cell therapy, it has 
been suggested that injection of  an allogeneic MSC re-
sults in a considerable reduction in inflammation and a 
formation of  new cartilage in RA due to their immuno-
suppressive and anti-inflammatory features[106]. In support 
of  this concept, injection of  MSCs in the mouse animal 
model with collagen-induced arthritis has been reported 
to prevent severe arthritis and to lower the serum level of  
inflammatory cytokines[107].

CONCLUSION
MSCs are specified as appropriate cell candidates for 
regenerating incurable defects of  articular cartilage due 
to the following characteristics: inherent chondrogenic 
property, easy availability, cell homing potential and im-
munomodulatory function. In the past, several attempts 
were made to exploit MSC capacity to cure articular 
cartilage defects developed in OA, rheumatoid arthritis 
or following trauma. Taken together, the outcomes of  
these trials show promising results. Furthermore, many 
clinical trials have been registered at www.clinicaltrial.gov 
regarding application of  MSCs for regenerating articular 
cartilage. With a worldwide extensive effort, MSCs will 
be routinely applicable in articular cartilage defects in 
the near future. Special attention must be given to im-
prove the quality of  repair tissue formed following MSC 
transplantation into the cartilage defect. First, efficient 
protocols must be developed to prevent hypertrophy of  
chondrocytes produced by MSC differentiation. Second, 
a practical solution must be explored regarding produc-
tion of  mature cartilage by MSC differentiation. Third, 
optimal biomaterial mimicking the matrix of  hyaline 
cartilage must be developed in order to provide appro-
priate chemical signals for right matrix production by 
MSCs following transplantation. Fourth, in most clini-
cal trials, MSCs are applied in the undifferentiated state. 
This approach exhibits a major potential drawback. 
MSCs represent a heterogeneous population containing 
multiple colonies with various differentiation capaci-
ties; therefore, to improve MSC regenerative outcome 
in cartilage defects, the cell population must be enriched 

for chondrogenic cells. Otherwise, pre-differentiation of  
MSCs will be essential in clinical applications in order 
to ensure appropriate lineage commitment and to avoid 
undesired heterotopic tissue formation. Finally, a gene 
therapy approach offers the potential of  addressing most 
of  these issues (i.e., chondrocyte hypertrophy, production 
of  immature cartilage and pre-differentiation of  MSCs) 
but this approach requires further improvement for MSC 
engraftment. More importantly, in this context, a safe 
highly efficient gene delivery system into MSCs with sus-
tained duration of  transgene expression and the optimal 
therapeutic gene(s) for cartilage repair must be identified. 
Moreover, determination of  an optimized combination 
of  genetically modified MSCs with scaffolds is of  utmost 
importance for producing a high quality repair tissue in 
vivo. 
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